
PROMISE

(PRecision OptiMISEd)

Laboratoire d’Informatique de Paris 6
Université Pierre et Marie Curie - Paris 6

Paris, France
http://promise.lip6.fr

Contents

1 Introduction 3

2 Prerequisite 3

3 Installation and test runs 3
3.1 Installation . 3
3.2 Test runs . 4
3.3 Summary . 4

4 Use PROMISE with your code 5
4.1 Example code . 5
4.2 Preparation of the code . 5
4.3 Choose the result to test . 6
4.4 To use the stochastic reference version of PROMISE 7
4.5 To use the full stochastic version of PROMISE 8
4.6 To get a final code with CADNA 8
4.7 Modify the test used . 8

2

1 Introduction

PROMISE is a tool to auto-tune floating-point precision with Discrete Stochas-
tic Arithmetic (DSA) [5], and in particular we use the CADNA library1 [2,
3, 4], to check the accuracy requested by the user.
Two versions may be used. The first one runs the reference code and every
tuned source code with CADNA. It is referred to as the full stochastic

version. The second one runs only the reference code with CADNA and
other executions are performed using standard floating-point types. It is
referred to as the stochastic reference version.
PROMISE has been developed for C/C++ codes. Every variable is tunable.
However, you can keep the definition types of some of them in single or in
double precision.

2 Prerequisite

To use PROMISE you need:

• A C++ compiler

• Python

• CADNA for C/C++

The example codes described in this document have been run using g++
4.9.2, Python version 2.7.9 and CADNA for C/C++ version 2.0.0.

3 Installation and test runs

3.1 Installation

First of all, you can indicate where CADNA is installed using the script
init.sh.
The src folder contains the source codes needed to run PROMISE. Two
versions of PROMISE exist and so you have to choose the full stochastic
one (make full) or the reference stochastic one (make ref) according to
the version you want to use. Then an executable called Promise compare

is generated. It is used to check the accuracy of a new configuration.

1can be downloaded from http://cadna.lip6.fr

3

3.2 Test runs

To run an example, go to the corresponding folder:

• arclength: An arclength computation

• MXM: A matrix multiplication

• rectangleMethod: rectangle method for the computation of integrals

• squareRoot: Babylonian method to approximate a square root

• CG: Conjugate Gradient method [1]

• SP: a scalar penta-diagonal solver [1]

In each folder test promise.py compiles, executes and tests the source code
using several functions:

• compile: compiles the code

• test significant digit high: executes the code in double precision
and checks the accuracy of the result

• test significant digit: executes a modified version of the code and
checks the accuracy of the result.

You can modify the number of requested digits (Digits) in two functions:
test significant digit and test significant digit high.
The command to run an example is ../../src/promise ref.py fileToTest

or ../../src/promise full.py fileToTest depending on the version of
PROMISE you want to use.
The modified source code can be found in the res folder.

3.3 Summary

To run an example such as arclength with the full stochastic version:

$./init.sh

Enter the location of the CADNA library folder

~/cadna

$ cd src

$ make full

$ cd ../examples/arclength

$../../src/promise_full.py fileToTest

4

To run an example such as arclength with the stochastic reference version:

$./init.sh

Enter the location of the CADNA library folder

~/cadna

$ cd src

$ make ref

$ cd ../examples/arclength

$../../src/promise_ref.py fileToTest

4 Use PROMISE with your code

4.1 Example code

In this section we take the following code as an example:

#include <iostream>

int main ()
{

double a = 3 .14 159 ;
double b = 2 .71 828 ;
double r e s ;

s td : : cout << ”a = ” << a << std : : endl ;
s td : : cout << ”b = ” << b << std : : endl ;

r e s = a ∗ b ;

std : : cout << ” r e s = ” << r e s << std : : endl ;
return 0 ;

}

4.2 Preparation of the code

The src/dump.h file contains some functions to extract data and be able
to use the reference stochastic version of PROMISE if you have tested your
code with CADNA before and kept CADNA functions in it2 and so should
be included in your source code. Also as you may want to enable CADNA

2for example cadna init or strp

5

at a specific point3, you have to manually write “cadna init(0);” at the
requested place.
So we have the following modified code:

#include <iostream>
#include ‘ ‘dump . h ’ ’

int main ()
{

double a = 3 .14 159 ;
double b = 2 .71 828 ;
double r e s ;

c a d n a i n i t (0) ;

s td : : cout << ”a = ” << a << std : : endl ;
s td : : cout << ”b = ” << b << std : : endl ;

r e s = a ∗ b ;

std : : cout << ” r e s = ” << r e s << std : : endl ;
return 0 ;

}

4.3 Choose the result to test

Two functions may be used to extract the result:

• dump(a): extracts the value of a in the result.bin file

• dump(a, size): extracts the value of a[i] for i in {0, 1, ..., size− 1}
in the result.bin file

In our example, as we want to check the accuracy of res we will use the
first one:

#include <iostream>
#include ‘ ‘dump . h ’ ’

int main ()

3In particular, after an initialization

6

{
double a = 3 .14 159 ;
double b = 2 .71 828 ;
double r e s ;

c a d n a i n i t (0) ;

s td : : cout << ”a = ” << a << std : : endl ;
s td : : cout << ”b = ” << b << std : : endl ;

r e s = a ∗ b ;

std : : cout << ” r e s = ” << r e s << std : : endl ;
dump(r e s) ;
return 0 ;

}

4.4 To use the stochastic reference version of PROMISE

You should replace every variable type you want to test by PROMISE :

#include <iostream>
#include ‘ ‘dump . h ’ ’

int main ()
{

PROMISE a = 3 .14 159 ;
PROMISE b = 2 .71 828 ;
PROMISE r e s ;

c a d n a i n i t (0) ;

s td : : cout << ”a = ” << a << std : : endl ;
s td : : cout << ”b = ” << b << std : : endl ;

r e s = a ∗ b ;

std : : cout << ” r e s = ” << r e s << std : : endl ;
dump(r e s) ;
return 0 ;

7

}

You can create your own version of the test file (see part 4.7). You may run
the promise ref.py script as in 3.3.

4.5 To use the full stochastic version of PROMISE

The easiest way to run the full stochastic version is to call cadnaizer full to
create a C++ file with CADNA statements that will be used by PROMISE

../../src/cadnaizer_full source_file.cpp -o file_to_test.cpp

You can create your own version of the test file (see part 4.7). You may run
the promise full.py script as described in 3.3.

4.6 To get a final code with CADNA

With both versions of PROMISE you can use the option -outCadna to get
a final code with CADNA. The possible command lines are in this case:

$../../src/promise_full.py fileToTest -outCadna

$../../src/promise_ref.py fileToTest -outCadna

4.7 Modify the test used

You can create your own test to validate a configuration. As explained
before, the value Digits in the test promise.py file is used as the accuracy
requirement.
By default, the test uses an infinity norm in the compare function from
the Promise Compare ref.cc or Promise Compare full.cc file. You may
modify this norm to adapt it to your needs.

8

References

[1] Contributors of Center for Manycore Programming, Seoul. SNU NPB
Suite, 2010.

[2] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel. High performance
numerical validation using stochastic arithmetic. Reliable Computing,
21(1):35–52, 2015.

[3] F. Jézéquel and J.-M. Chesneaux. CADNA: a library for estimat-
ing round-off error propagation. Computer Physics Communications,
178(12):933–955, 2008.

[4] J.-L. Lamotte, J.-M. Chesneaux, and F. Jézéquel. CADNA C: A ver-
sion of CADNA for use with C or C++ programs. Computer Physics
Communications, 181(11):1925–1926, 2010.

[5] J. Vignes. Discrete Stochastic Arithmetic for validating results of numer-
ical software. Numerical Algorithms, 37(1–4):377–390, December 2004.

9

